Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.754
Filtrar
1.
PLoS One ; 19(4): e0302292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626181

RESUMO

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Duplicação Gênica , Filogenia , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Mostardeira/genética , Sinais Direcionadores de Proteínas/genética , Regulação da Expressão Gênica de Plantas
2.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 834-846, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545981

RESUMO

The signal peptide is a key factor that affects the efficiency of protein secretion in Pichia pastoris. Currently, the most used signal peptide is the α-mating factor (MFα) pre-pro leader from Saccharomyces cerevisiae. This exogenous signal peptide has been successfully utilized to express and secret many heterologous proteins. However, MFα is not suitable for the secretory expression of all heterologous proteins. Many typical signal peptides are present in the secretory proteins of P. pastoris, which provides more options besides MFα. Therefore, it is necessary to analyze and identify more efficient endogenous signal peptides that can guide the secretion of heterologous proteins in P. pastoris. In this study, we employed bioinformatics tools such as SignalP, TMHMM, Phobius, WoLF PSORT, and NetGPI to predict endogenous signal peptides from the entire proteome of P. pastoris GS115 (ATCC 20864). Moreover, we analyzed the distribution, length, amino acid composition, and conservation of these signal peptides. Additionally, we screened 69 secreted proteins and their signal peptides, and through secretome validation, we identified 10 endogenous signal peptides that have potential to be used for exogenous protein expression. The endogenous signal peptides obtained in this study may serve as new valuable tools for the expression and secretion of heterologous proteins in P. pastoris.


Assuntos
Sinais Direcionadores de Proteínas , Proteoma , Saccharomycetales , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Proteoma/genética , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Methods Mol Biol ; 2778: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478269

RESUMO

Transmembrane ß-barrel proteins reside in the outer membrane of Gram-negative bacteria and are thus in direct contact with the environment. Because of that, they are involved in many key processes stretching from cellular survival to virulence. Hence, they are an attractive target for the development of novel antimicrobials, in addition to being of fundamental biological interest. To study this class of proteins, they are often required to be expressed in Escherichia coli. Recombinant expression of ß-barrel proteins can be achieved using two fundamentally different strategies. The first alternative uses a complete coding sequence that includes a signal peptide for targeting the protein to its native cellular location, the bacterial outer membrane. The second alternative omits the signal peptide in the gene, leading to mislocalization and aggregation of the protein in the bacterial cytoplasm. These aggregates, called inclusion bodies, can be solubilized and the protein can be folded into its native form in vitro. In this chapter, we present example protocols for both strategies and discuss their advantages and disadvantages.


Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/genética
4.
ACS Synth Biol ; 13(4): 1246-1258, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483353

RESUMO

Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas/genética , Clonagem Molecular
5.
Mol Cell Probes ; 74: 101956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492609

RESUMO

Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.


Assuntos
Francisella tularensis , Francisella tularensis/genética , Francisella tularensis/química , Francisella tularensis/metabolismo , Lisina/metabolismo , Peptídeos/genética , Códon/genética , Sinais Direcionadores de Proteínas/genética
6.
J Mol Biol ; 436(6): 168492, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360088

RESUMO

Many insulin gene variants alter the protein sequence and result in monogenic diabetes due to insulin insufficiency. However, the molecular mechanisms of various disease-causing mutations are unknown. Insulin is synthesized as preproinsulin containing a signal peptide (SP). SPs of secreted proteins are recognized by the signal recognition particle (SRP) or by another factor in a SRP-independent pathway. If preproinsulin uses SRP-dependent or independent pathways is still debatable. We demonstrate by the use of site-specific photocrosslinking that the SRP subunit, SRP54, interacts with the preproinsulin SP. Moreover, SRP54 depletion leads to the decrease of insulin mRNA and protein expression, supporting the involvement of the RAPP protein quality control in insulin biogenesis. RAPP regulates the quality of secretory proteins through degradation of their mRNA. We tested five disease-causing mutations in the preproinsulin SP on recognition by SRP and on their effects on mRNA and protein levels. We demonstrate that the effects of mutations are associated with their position in the SP and their severity. The data support diverse molecular mechanisms involved in the pathogenesis of these mutations. We show for the first time the involvement of the RAPP protein quality control pathway in insulin biogenesis that is implicated in the development of neonatal diabetes caused by the Leu13Arg mutation.


Assuntos
Insulina , Precursores de Proteínas , Estabilidade de RNA , Partícula de Reconhecimento de Sinal , Humanos , Recém-Nascido , Diabetes Mellitus , Insulina/genética , Insulina/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
7.
Mol Biol Rep ; 51(1): 362, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403791

RESUMO

BACKGROUND: Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount. METHODS: Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted. RESULTS: Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction. CONCLUSIONS: The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.


Assuntos
Fusarium , Musa , Musa/genética , Filogenia , Fusarium/genética , Clonagem Molecular , Sinais Direcionadores de Proteínas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
8.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 573-584, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369842

RESUMO

Signal peptides (SP) are involved in regulating the secretion level and transmembrane translocation of chimeric antigen receptors (CAR), which is crucial for CAR-T cells. This study aimed to optimize the SP sequence by site-directed mutagenesis and investigate its impact on the killing function of CD19-CAR-T. Firstly, CAR vectors targeting CD19 containing wild-type SP (SP-wtY) or two mutant SP (SP-muK or SP-muR) were constructed using gene synthesis and molecular cloning techniques. The successfully constructed vector was packaged with lentivirus, and T cells were infected. The transfection efficiency of T cells was detected by flow cytometry, while the killing effect on target cells was assessed using the calcein release method. The secretion levels of cytokines interferon-γ (IFN-γ) and interferon-α (TNF-α) were measured using enzyme linked immunosorbent assay (ELISA). The results showed that successful construction of recombinant lentivirus plasmids with wild type and signal peptide mutation. After the transferring the lentivirus into T cells, the transfection efficiency of CD19-CAR carrying three signal peptides (SP-wtY, SP-muK, or SP-muR) were 33.9%, 35.5%, and 36.8%, respectively. Further killing assay showed that the tumor-killing effect of SP-muR cells was significantly higher than that of SP-muK and SP-wtY cells. When the ratio of effector to target was 10:1, the secretion levels of cytokines IFN-γ and TNF-α of CAR-T cells of the SP-muR group were significantly higher than those in SP-muK and SP-wtY groups. In summary, this study revealed that increasing the N-terminal positive charge of the signal peptide can improve the expression efficiency of CAR and promote the killing of CD19+ target cells. These findings provide a scientific basis the optimization and clinical application of CAR structure.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais Direcionadores de Proteínas/genética , Linfócitos T/metabolismo , Lentivirus/genética , Citocinas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Mutagênese Sítio-Dirigida
9.
Nat Comput Sci ; 4(1): 29-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177492

RESUMO

Signal peptides (SPs) are essential to target and transfer transmembrane and secreted proteins to the correct positions. Many existing computational tools for predicting SPs disregard the extreme data imbalance problem and rely on additional group information of proteins. Here we introduce Unbiased Organism-agnostic Signal Peptide Network (USPNet), an SP classification and cleavage-site prediction deep learning method. Extensive experimental results show that USPNet substantially outperforms previous methods on classification performance by 10%. An SP-discovering pipeline with USPNet is designed to explore unprecedented SPs from metagenomic data. It reveals 347 SP candidates, with the lowest sequence identity between our candidates and the closest SP in the training dataset at only 13%. In addition, the template modeling scores between candidates and SPs in the training set are mostly above 0.8. The results showcase that USPNet has learnt the SP structure with raw amino acid sequences and the large protein language model, thereby enabling the discovery of unknown SPs.


Assuntos
Sinais Direcionadores de Proteínas , Proteínas , Sinais Direcionadores de Proteínas/genética , Proteínas/química , Sequência de Aminoácidos
10.
ACS Synth Biol ; 13(2): 648-657, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38224571

RESUMO

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Sinais Direcionadores de Proteínas/genética , Plasmídeos/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Transporte Proteico
11.
Artigo em Inglês | MEDLINE | ID: mdl-38253396

RESUMO

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.


Assuntos
Bacillus licheniformis , Glucosiltransferases , Neisseria , Bacillus licheniformis/metabolismo , Sinais Direcionadores de Proteínas/genética , Frutanos , Arginina , Proteínas de Bactérias/genética
12.
Sci Rep ; 13(1): 21420, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049513

RESUMO

The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.


Assuntos
Flavobacterium , Glicosídeo Hidrolases , Flavobacterium/genética , Flavobacterium/metabolismo , Filogenia , Glicosídeo Hidrolases/metabolismo , Sinais Direcionadores de Proteínas/genética , Parede Celular/metabolismo
13.
BMC Genomics ; 24(1): 730, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049721

RESUMO

BACKGROUND: Venom phospholipase D (PLDs), dermonecrotic toxins like, are the major molecules in the crude venom of scorpions, which are mainly responsible for lethality and dermonecrotic lesions during scorpion envenoming. The purpose of this study was fivefold: First, to identify transcripts coding for venom PLDs by transcriptomic analysis of the venom glands from Androctonus crassicauda, Hottentotta saulcyi, and Hemiscorpius lepturus; second, to classify them by sequence similarity to known PLDs and motif extraction method; third, to characterize scorpion PLDs; fourth to structural homology analysis with known dermonecrotic toxins; and fifth to investigate phylogenetic relationships of the PLD proteins. RESULTS: We found that the venom gland of scorpions encodes two PLD isoforms: PLD1 ScoTox-beta and PLD2 ScoTox-alpha I. Two highly conserved regions shared by all PLD1s beta are GAN and HPCDC (HX2PCDC), and the most important conserved regions shared by all PLD2s alpha are two copies of the HKDG (HxKx4Dx6G) motif. We found that PLD1 beta is a 31-43 kDa acidic protein containing signal sequences, and PLD2 alpha is a 128 kDa basic protein without known signal sequences. The gene structures of PLD1 beta and PLD2 alpha contain 6 and 21 exons, respectively. Significant structural homology and similarities were found between the modeled PLD1 ScoTox-beta and the crystal structure of dermonecrotic toxins from Loxosceles intermedia. CONCLUSIONS: This is the first report on identifying PLDs from A. crassicauda and H. saulcyi venom glands. Our work provides valuable insights into the diversity of scorpion PLD genes and could be helpful in future studies on recombinant antivenoms production.


Assuntos
Fosfolipase D , Venenos de Escorpião , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Escorpiões/genética , Filogenia , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
14.
Nat Commun ; 14(1): 7734, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007494

RESUMO

The ribosomally synthesized and post-translationally modified peptide (RiPPs) class of natural products has undergone significant expansion due to the rapid growth in genome sequencing data. Using a bioinformatics approach, we identify the dehydrazoles, a novel class of hypermodified RiPPs that contain both side chain dehydration of Ser residues, and backbone heterocyclization at Ser, Thr, and Cys residues to the corresponding azol(in)es. Structure elucidation of the hypermodified peptide carnazolamide, a representative class member, shows that 18 post-translational modifications are installed by just five enzymes. Complete biosynthetic reconstitution demonstrates that dehydration is carried out by an unusual DUF4135 dehydration domain fused to a zinc-independent cyclase domain (CcaM). We demonstrate that CcaM only modifies Ser residues that precede an azole in the core peptide. As heterocyclization removes the carbonyl following the Ser residue, CcaM likely catalyzes dehydration without generating an enolate intermediate. Additionally, CcaM does not require the leader peptide, and this core-dependence effectively sets the order for the biosynthetic reactions. Biophysical studies demonstrate direct binding of azoles to CcaM consistent with this azole moiety-dependent dehydration. Bioinformatic analysis reveals more than 50 related biosynthetic gene clusters that contain additional catalysts that may produce structurally diverse scaffolds.


Assuntos
Desidratação , Peptídeos , Humanos , Peptídeos/química , Sinais Direcionadores de Proteínas/genética , Azóis , Processamento de Proteína Pós-Traducional
15.
Biosystems ; 234: 105043, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852409

RESUMO

The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.


Assuntos
RNA de Transferência , RNA , RNA/química , RNA de Transferência/genética , Código Genético/genética , Códon , Sinais Direcionadores de Proteínas/genética , Evolução Molecular
16.
Microb Cell Fact ; 22(1): 203, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805580

RESUMO

BACKGROUND: Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh ß-sheet of sfGFP, which can complement a truncated sfGFP that lacks this ß-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS: The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION: Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.


Assuntos
Bacillus subtilis , Técnicas Biossensoriais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Transporte Proteico , Proteínas Recombinantes , Sinais Direcionadores de Proteínas/genética , Proteínas de Bactérias/metabolismo
17.
Fish Shellfish Immunol ; 142: 109143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827249

RESUMO

Pattern recognition receptors (PRRs) play a crucial role in the recognition and activation of innate immune responses against invading microorganisms. This study characterizes a novel C-type lectin (CTL), SpccCTL. The cDNA sequence of SpccCTL has a full length of 1744 bp encoding a 338-amino acid protein. The predicted protein contains a signal peptide, a coiled-coil (CC) domain, and a CLECT domain. It shares more than 50 % similarity with a few CTLs with a CC domain in crustaceans. SpccCTL is highly expressed in gills and hemocytes and upregulated after MCRV challenge, suggesting that it may be involved in antiviral immunity. Recombinant SpccCTL (rSpccCTL) as well as two capsid proteins of MCRV (VP11 and VP12) were prepared. Pre-incubating MCRV virions with rSpccCTL significantly suppresses the proliferation of MCRV in mud crabs, compared with the control (treatment with GST protein), and the survival rate of mud crabs is also significantly decreased. Knockdown of SpccCTL significantly facilitates the proliferation of MCRV in mud crabs. These results reveal that SpccCTL plays an important role in antiviral immune response. GST pull-down assay result shows that rSpccCTL interacts specifically with VP11, but not to VP12. This result is further confirmed by a Co-IP assay. In addition, we found that silencing SpccCTL significantly inhibits the expression of four antimicrobial peptides (AMPs). Considering that these AMPs are members of anti-lipopolysaccharide factor family with potential antiviral activity, they are likely involved in immune defense against MCRV. Taken together, these findings clearly demonstrate that SpccCTL can recognize MCRV by binding viral capsid protein VP11 and regulate the expression of certain AMPs, suggesting that SpccCTL may function as a potential PRR playing an essential role in anti-MCRV immunity of mud crab. This study provides new insights into the antiviral immunity of crustaceans and the multifunctional characteristics of CTLs.


Assuntos
Braquiúros , Animais , Proteínas de Transporte/genética , Proteínas Virais/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Imunidade Inata/genética , Sinais Direcionadores de Proteínas/genética , Proteínas de Artrópodes , Filogenia
18.
Plant Physiol ; 194(1): 434-455, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37770073

RESUMO

Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves. However, the molecular role of SHLF was unclear due to the absence of known conserved domains. Through a series of protein domain deletion analyses, here, we demonstrate the importance of the signal peptide and the conserved TDRs and report a minimal functional protein (miniSHLF) containing the N-terminal signal peptide and first two TDRs (N-TDR1-2). We also demonstrate that SHLF behaves as a secretory protein and that the TDRs contribute to a pool of secreted peptides essential for SHLF function. Further, we identified that the mutant secretome lacks SHLF peptides, which are abundant in WT and miniSHLF secretomes. Interestingly, shlf mutants supplemented with the secretome or peptidome from WT or miniSHLF showed complete or partial phenotypic recovery. Transcriptomic and metabolomic analyses revealed that shlf displays an elevated stress response, including high ROS activity and differential accumulation of genes and metabolites involved in the phenylpropanoid pathway, which may affect auxin distribution. The TDR-specific synthetic peptide SHLFpep3 (INIINAPLQGFKIA) also rescued the mutant phenotypes, including the altered auxin distribution, in a dosage-dependent manner and restored the mutant's stress levels. Our study shows that secretory SHLF peptides derived from conserved TDRs regulate moss gametophore development.


Assuntos
Bryopsida , Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Ácidos Indolacéticos/metabolismo , Sequências Repetitivas de Ácido Nucleico , Sinais Direcionadores de Proteínas/genética
19.
J Biotechnol ; 375: 12-16, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37634828

RESUMO

Increasing the screening efficiency and maintaining the N-terminal cleavage pattern are key factors in the development of an in vitro synthetic signal peptide screening system for high therapeutic protein production in Chinese hamster ovary (CHO) cells. This study improved the in vitro screening system of synthetic signal peptides in CHO cells for therapeutic protein production by modifying the expression vector. Incorporating a leaky stop codon with IgG transmembrane and cytoplasmic domains into the expression vector improved the proportion of high producers in establishing stable CHO cell pools. The selected signal peptides from stable CHO cell pools that were generated using degenerate codon-based oligonucleotides with a conserved polar carboxy-terminal domain in the native signal peptide showed similar N-terminal cleavage patterns to the native one. In addition, replacing native signal peptide with selected synthetic signal peptides did not influence the sialylated N-linked glycan formation and biological activity of therapeutic Fc-fusion glycoprotein in CHO cells. Thus, an in vitro synthetic signal peptide screening system can be used for therapeutic Fc-fusion glycoprotein production in CHO cells with an enhanced specific protein productivity while maintaining the N-terminal cleavage pattern similar to the native one.


Assuntos
Oligonucleotídeos , Sinais Direcionadores de Proteínas , Animais , Cricetinae , Sinais Direcionadores de Proteínas/genética , Células CHO , Cricetulus
20.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2743-2761, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584129

RESUMO

Nitrate is the main form of inorganic nitrogen that crop absorbs, and nitrate transporter 2 (NRT2) is a high affinity transporter using nitrate as a specific substrate. When the available nitrate is limited, the high affinity transport systems are activated and play an important role in the process of nitrate absorption and transport. Most NRT2 cannot transport nitrates alone and require the assistance of a helper protein belonging to nitrate assimilation related family (NAR2) to complete the absorption or transport of nitrates. Crop nitrogen utilization efficiency is affected by environmental conditions, and there are differences between varieties, so it is of great significance to develop varieties with high nitrogen utilization efficiency. Sorghum bicolor has high stress tolerance and is more efficient in soil nitrogen uptake and utilization. The S. bicolor genome database was scanned to systematically analyze the gene structure, chromosomal localization, physicochemical properties, secondary structure and transmembrane domain, signal peptide and subcellular localization, promoter region cis-acting elements, phylogenetic evolution, single nucleotide polymorphism (SNP) recognition and annotation, and selection pressure of the gene family members. Through bioinformatics analysis, 5 NRT2 gene members (designated as SbNRT2-1a, SbNRT2-1b, SbNRT2-2, SbNRT2-3, and SbNRT2-4) and 2 NAR2 gene members (designated as SbNRT3-1 and SbNRT3-2) were identified, the number of which was less than that of foxtail millet. SbNRT2/3 were distributed on 3 chromosomes, and could be divided into four subfamilies. The genetic structure of the same subfamilies was highly similar. The average value of SbNRT2/3 hydrophilicity was positive, indicating that they were all hydrophobic proteins, whereas α-helix and random coil accounted for more than 70% of the total secondary structure. Subcellular localization occurred on plasma membrane, where SbNRT2 proteins did not contain signal peptides, but SbNRT3 proteins contained signal peptides. Further analysis revealed that the number of transmembrane domains of the SbNRT2s family members was greater than 10, while that of the SbNRT3s were 2. There was a close collinearity between NRT2/3s of S. bicolor and Zea mays. Protein domains analysis showed the presence of MFS_1 and NAR2 protein domains, which supported executing high affinity nitrate transport. Phylogenetic tree analysis showed that SbNRT2/3 were more closely related to those of Z. mays and Setaria italic. Analysis of gene promoter cis-acting elements indicated that the promoter region of SbNRT2/3 had several plant hormones and stress response elements, which might respond to growth and environmental cues. Gene expression heat map showed that SbNRT2-3 and SbNRT3-1 were induced by nitrate in the root and stem, respectively, and SbNRT2-4 and SbNRT2-3 were induced by low nitrogen in the root and stem. Non-synonymous SNP variants were found in SbNRT2-4 and SbNRT2-1a. Selection pressure analysis showed that the SbNRT2/3 were subject to purification and selection during evolution. The expression of SbNRT2/3 gene and the effect of aphid infection were consistent with the expression analysis results of genes in different tissues, and SbNRT2-1b and SbNRT3-1 were significantly expressed in the roots of aphid lines 5-27sug, and the expression levels of SbNRT2-3, SbNRT2-4 and SbNRT3-2 were significantly reduced in sorghum aphid infested leaves. Overall, genome-wide identification, expression and DNA variation analysis of NRT2/3 gene family of Sorghum bicolor provided a basis for elucidating the high efficiency of sorghum in nitrogen utilization.


Assuntos
Transportadores de Nitrato , Sorghum , Nitratos/metabolismo , Sorghum/genética , Sorghum/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Filogenia , Sinais Direcionadores de Proteínas/genética , Nitrogênio/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...